Large Language Models (LLMs)

Logo-2021-1
BAI

About This Course

This course will teach you the essentials of how Large Language Models (LLMs) understand and generate language. We’ll begin with a high-level comparison of different LLM types, analyzing their strengths and weaknesses. Then, we’ll dive into the technical core, covering Natural Language Processing (NLP) concepts like tokenization, transformer architectures, and attention mechanisms. The ultimate goal is a hands-on project: building a custom chatbot using unsupervised learning, prompt engineering, and Retrieval Augmented Generation (RAG) to integrate an LLM with your own dataset.

Curriculum

143 Lessons

LLMs Module: Introduction to Large Language Models

Introduction to the course2:21
What are LLMs00:00:00
How large is an LLM00:00:00
General purpose models00:00:00
Pretraining and fine tuning00:00:00
What can LLMs be used for00:00:00

LLMs Module: The Transformer Architecture

LLMs Module: Getting Started With GPT Models

LLMs Module: Hugging Face Transformers

LLMs Module: Question and Answer Models With BERT

LLMs Module: Text Classification With XLNet

LangChain Module: Introduction

LangChain Module: Tokens, Models, and Prices

LangChain Module: Setting Up the Environment

LangChain Module: The OpenAI API

LangChain Module: Model Inputs

LangChain Module: Message History and Chatbot Memory

LangChain Module: Output Parsers

LangChain Module: LangChain Expression Language (LCEL)

LangChain Module: Retrieval Augmented Generation (RAG)

LangChain Module: Tools and Agents

Vector Databases Module: Introduction

Vector Databases Module: Basics of Vector Space and High-Dimensional Data

Vector Databases Module: Introduction to The Pinecone Vector Database

Vector Databases Module: Semantic Search with Pinecone and Custom (Case Study)

llms
Level
Intermediate
Lectures
143 lectures

Pick a plan

Cialis Orijinal web sitesi Cialis satış hizmeti vermektedir. Orjinal Cialistemin edebileceğiniz tek adres https://cialis35.com .